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ABSTRACT

A unified approach for solving incompressible flows has been investigated in this study.
The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study

was successfully developed by Sanders and Li for compressible flows, especially for the

high speed. The CTVD scheme possesses better mathematical properties to damp out
the spurious oscillations while providing high-order accuracy for high speed flows. It
leads us to believe that the CTVD scheme can equally well apply to solve incompressible

flows. Because of the mathematical difference between the governing equations for

incompressible and compressible flows, the scheme can not directly apply to the
incompressible flows. However, if one can modify the continuity equation for

incompressible flows by introducing pseudo-compressibility, the governing equations for

incompressible flows would have the same mathematical characters as compressible
flows. The application of the algorithm.to incompressible flows thus becomes feasible.

In this study, the governing equations for incompressible flows comprise continuity

equation and momentum equations. The continuity equation is modified by adding a
time-derivative of the pressure term containing the artificial compressibility. The modified

continuity equation together with the unsteady momentum equations forms a hyperbolic-
parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be

implemented. In addition, the physical and numerical boundary conditions are properly
implemented by the characteristic boundary conditions.

Accordingly, a CFD code has been developed for this research and is currently under
testing. Flow past a circular cylinder was chosen for numerical experiments to determine

the accuracy and efficiency of the code. The code has shown some promising results.
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INTRODUCTION

GOVERNING EQUATIONS

The two-dimensional incompressible-flowequations expressed in conservativevariables,
p, pu, and pv are as follows:

apu apv ,,_+--=u (1)
ax ay

apu apu 2 apuv ap.,.rpva2pu.,.a2pu_ (2)

apv apuv apv 2 ap ,p,,a2pv a2pv,
_+_+_=-_+_ )_ + )at ax ay ay -5-7-

(3)

where u and v are velocity components in the x and y directions, respectively. P is the

static pressure, p denotes the dynamic viscosity, p is the fluid density. The
incompressible governing equations (1) through (3) are mathematically classified as
elliptic partial differential equations while compressible governing equations are hyperbolic
partial differential equations. Because of the mathematical difference between the

hyperbolic and elliptic partial differential equations, a well-developed numerical schemes
for compressible flows can not apply directly to solve incompressible flows. However, if

one modifies the continuity equation given in equation (1) by introducing artificial
compressibility, the resulting incompressible governing equations are of hyperbolic type.
The modified continuity equation including a time-derivative of the pressure term

containing the artificial compressibility is given in equation (4).

ap+ al3pu, a_PV=o (4)
at ax ay
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where 13is known as the pseudo-compressibility constant and has the dimension as
velocity square.

Equations (2) through (4) are transformed ontogeneralized curvilinearcoordinates, { and
given by

_=_(x,y,t)
(s)

_=_(x,y,t)
(6)

The governing equations are then given by

OQ O(E-Ev) O(F-F,,)
_ =I-_+ _0

a.c o_ an
(7)

where

(8)

.l_p(u-_,)7
E=Zlpuu+_,,PI

J[ vv+ ,oj
(9)

.I-_p(v-n,)l
F=±lpuv+_j_l

JLpvv+,l,_J
(10)
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(11)

I o ]
Ev = p" _,'qx+{yTly) U_ +('q2x+'q_)U.

J 2 2Ll ,n,+ ,nylvclnx+n,lvJ

(12)

U and V are contravariant velocities. J is the Jacobian of the transformation, the metrics
of the transformation are

a_ __a_ (13)

and

_ o_q _ aT] (14)

U and V are contravariant velocities and given as follows:

U=_xU+_yV, V=_,_'+nyV (15)

The transformed governing equation given in equation (7) is then solved by a finite

volume method. Accordingly, the conservation laws given below in integral form is used
in the formulation.

_ f _'+ f D.dA=O (16)
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D is derived from equation (7) and a second-order flux tensor defined in _ and TI.

NUMERICAL SCHEME

A CTVD scheme developed by Sanders and Li (Ref. 1) is adopted to determine the
interfacial variables for the finite volume formulation. The CTVD differencing has
distinctivelydesired properties inovercomingthe spuriousoscillations and odd- and even-
point decoupling in the solutionwhich are caused by the use of central differencing. This
scheme has demonstrated the superiority in reducing CPU time while providing up to
fourth order accuracy. In addition, the implementationof these algorithms is simple and
no tuning parameters are needed.

By applyingthe interracialvariables derived from the CTVD scheme to the conservation
laws given in equation (16)numerical fluxes are evaluatedon the cell faces based on the
spatial discretization. Equation (16) is further reduced to a system of time dependent
differential equations by the methodof lines. The system of differential equations can be
integrated by a number of relaxation methods. In this study, the explicit Runge-Kutta
method is employed for solutions.

The implementation of wall and far-field boundary conditions is crucial to the numerical
scheme. The flows are treated as subsonic. Therefore, the proper far-field boundary
conditions must be imposed. Characteristicboundaryconditions are used and integrated
into CTVD scheme to evaluate fluxes.

NUMERICAL EXPERIMENTS

A CFD code based on the CTVDscheme has beendeveloped to solve two-dimensional
incompressible flows. Numerical testings have been conducted to solve flow past a
circular cylinder problem. The far-field boundary conditions are imposed at a distance 10
times of radius from the center of the cylinder. The initial conditions are given as follows:

p =2.O Ib/_
Uo=1.0 ft/sec.
p=1.0 slug/ft3

R=I.0 ft., is the radius of the cylinder. 13=5,10,30,40,and 50 ft2/sec2 are utilized in
numericaltestings. The O-gridsystem is used to discritizethe flow domain. All numerical
testings are based on a grid of 61x82 nodes. A periodic boundary condition is imposed
around the branch cut. The maximum CFL number can be used in each testing is 0.6.
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According to the numerical results, [3value plays very important role in the numerical
calculation. When 13is greater than 10and less than 40, the solutionconverges. A typical
second-order pressure field is given in Figure 1 after 500 iterations.

The numerical testings have not finished yet.
properly imposing wall boundary conditions.
calculation is also a subject for more research.

More testings are need to investigate
How to increase CFL number in the

CONCLUDING REMARKS

A research CFD code has been developed for incompressible flows using the CTVD
scheme. The numerical results have shown that the CTVD scheme can apply to
incompressible flows by the use of a modifiedcontinuity equation. A converged solution
can be obtained by choosing a proper pseudo-compressibility constant. A further
investigation on the CFL number is necessary in order to increase the efficiency of the
method. The implementationof diagonalADI method to solvethe reducedset of ordinary
differential equations would increase the efficiency of the method.
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